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Abstract  
The Levo high ILP microarchitecture is described and evaluated. Levo employs instruction 

time-tags and active stations to ensure correct operation in a rampantly speculative and out-of-
order resource flow execution model. The Tomasulo-algorithm-like broadcast buses are 
segmented; their lengths are constant, that is, do not increase with machine size. This helps to 
make Levo scalable. Known High-ILP techniques such as Disjoint Eager Execution and Minimal 
Control Dependencies are implemented in novel ways. Examples of basic Levo operation are 
given. A chip floorplan of Levo is presented, demonstrating feasibility and little cycle-time 
impact. Levo is simulated, characterizing its basic geometry and its performance. 

1 Introduction 
Levo is a General-Purpose (GP) processor exhibiting large IPC (Instructions Per Cycle) with 
realistic hardware constraints, scalability and little increase in cycle time. The Levo core exhibits 
IPC’s greater than 10 on such complex SPECInt benchmarks as gcc and go. The basic Levo 
operation model is resource flow execution: instructions execute as soon as their operands 
(speculative or otherwise) are acquired and a Processing Element (PE) is free. 

While Levo does use many transistors, billion transistor chips are becoming a reality; further, 
the trend has always been to use hardware less efficiently as chip transistor densities increased, 
vis-à-vis all common digital systems. Power and energy consumption are also issues, but we 
believe it is first necessary to establish the basic performance potential of the microarchitecture; 
that is the focus of this paper.  

In this paper we describe Levo and its operation. We provide detailed simulation results 
characterizing Levo over a large range of its possible geometries, and present evidence of Levo’s 
even larger potential performance.  
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The paper is organized as follows. In Section 2 we review major impediments to high IPC 
realization. Section 3 provides the Levo logical description, and discusses Levo’s solutions to the 
high IPC problems. Other issues are addressed in Section 4. Section 5 describes the physical 
operation of Levo and presents a possible Levo single chip floorplan. Section 6 gives our 
experimental methodology, while Section 7 presents and discusses our simulation results. We 
conclude in Section 8. 

2 High IPC Problems 
There are three major impediments to high IPC: 1) high and/or unscalable hardware cost; 2) 
degradation of (increase in) cycle time, negating IPC performance gains; and 3) lack of high-IPC 
extraction methods. Prior work has shown that there is much ILP (Instruction Level Parallelism) 
in typical GP code [7]. Large instruction windows and reorder buffers are necessary to realize a 
fraction of this ILP [13]; these structures greatly exacerbate the first two high-IPC impediments. 
A system is scalable if its cost grows linearly or less with an increase in the number of 
Processing Elements or other key elements.1 

2.1  High Cost 
Typical microarchitectures, such as the Pentium P6 [11] and the Alpha EV8 [12], use a large 
Reorder Buffer to maintain the logical correctness of the code executing out-of-order (OOO). 
The cost of reorder buffers and other dependency checking/maintaining types of structures [15] 
is large and does not scale with the number of entries; the typical cost is O(k2) where k is the 
number of entries in the reorder buffer and/or instruction window, since elements of each entry 
must be compared to elements of every other entry.  

Large pipeline depths also have issues: for a dynamically scheduled high-performance 
pipeline O(p2) forwarding paths are necessary to reduce or eliminate the ill performance effects 
of data dependencies between data in different stages, where p is the number of pipeline stages.  

2.2  Unscalable Microarchitecture 
As chip feature sizes shrink, buses become electrically long (high RC time). This leads to longer 
cycle times and hence reduced overall performance, as does the unscalable hardware mentioned 
in Section 2.1. Centralized resources such as architectural register files exacerbate the problem. 
They result in long bus delays and a prohibitively high number of register ports [12]. The latter 
can increase the size of the register file substantially, further slowing the system. 

2.3  Low IPC 
The high ILP promised over the years has not translated into high IPC or overall performance in 
a realistic processor, even in machines that did well, such as [8]. Part of the problem is that high-
yield ILP methods and combinations of methods have not been attempted with realistic 
hardware.  

                                                 
1 As many researchers have observed over the years, no system is truly scalable by this definition: as the system 

grows, eventually some element grows visibly faster than O(k), often at O(k*log(k)). Within some large values of k, 
Levo is effectively scalable by our original definition, that is, the multiplier constant for the k*log(k) term is much 
less than that for the k term; the k term dominates. In traditional systems, the k2 term(s) dominate. 
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3 Levo High IPC Solutions and Description 
Levo consists of distributed and scalable hardware. A high-level logical block diagram of Levo 
is shown in Figure 1. The major novel part of Levo is the n X m instruction Execution Window 
(E-window).  

Levo operates as follows. Instructions are fetched from the L1 I-Cache into the Instruction 
Window and assembled into a block one E-window column high (n instructions). When the first 
column (0) in the E-window commits, the entire E-window contents are logically shifted left and 
the new instruction block is shifted into the last E-window column (m-1). Column 0 commits 
when all of its instructions have finished executing: the memory store results in Column 0 are 
sent to the L1 D-Cache, and the ISA register results are sent to later columns. Processing 
resources are located uniformly throughout the E-window. All instructions in the E-window, 
including memory operations, are eligible for execution at any time. Store results, as well as 
register operation and branch operation results (predicates), are broadcast forward (to the right) 
in the E-window and snarfed by instructions with matching operand addresses. Load requests are 
satisfied either from earlier in the E-window or directly from the L1 D-Cache. 

There are two key novel features of the E-window that make it scale and ensure that each 
operand (eventually) gets the right result as its input. First, the broadcast bus is divided into 
segments, each one typically a column long. The bottom, or end, of one segment is coupled to 
the top of the next segment via storage elements having a small delay. Thus, additional columns 
can be added to the E-window without impacting Levo’s cycle time.  

The second novel feature is Levo’s use of time tags. Each instruction in the E-window has a 
unique time tag corresponding to its position in the E-window. The time tags provide the proper 
result-operand linkage with scalable hardware, since all comparisons are made simultaneously 
with an amount of hardware directly proportional to the machine size. The time tags are used for 
all dependency checking and all data: memory, register and branch (predicate). 

In detail, the E-window holds nm Active Stations (AS). An Active Station is a more 
intelligent form of Tomasulo’s reservation station [14]. Each AS holds one instruction. Small 
numbers of physically close AS’s form Sharing Groups (SG); see Figure 4. Processing Elements 
(PE) are assigned to each sharing group, typically one PE per SG. Each AS in the E-window has 
a corresponding time tag indicating its instruction’s nominal temporal execution order. Time tags 
are formed by the concatenation of the AS’s E-window column number and row number. 

Levo’s microarchitecture should be alterable to match any ISA, with varying performance 
benefits. So far we have fully realized one GP ISA, the MIPS-1, in our simulator, and obtained 
high performance. No compiler modifications are necessary for Levo. Therefore legacy code can 
be executed. Adding Levo-specific compiler optimizations and examining more ISAs in detail 
are subjects for future work 

3.1  Time Tags with Active Stations  Low Cost 
Levo uses novel time-tagged active stations to realize speculative data-flow execution of code. 
No explicit renaming registers or reorder buffer are used.  

The basic operation of time-tagged instructions is shown in Figure 2. Both classic renaming 
and time-tagging assume the broadcast of instruction result information on a bus, snooped by all 
reservation/active stations. Figure 2 (a) shows the program code sequence considered and its 
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outcome. Instruction 9 (I9) uses the closest previous value of R4 as its input. Figure 2 (b) shows 
the execution of the code assuming the use of renaming registers. I9 has been modified at 
instruction load time to source only the result of I5. I9 snarfs the result value of I5 when I9’s 
operand register address equals the register address (4b) broadcast on the bus; I9 then executes. 
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Figure 1. Levo high-level logical block diagram. The Execution Window is the key element. 

In Figure 2 (c), with time-tagging, no renaming is performed. Instead, each station now has a 
Last Snarfed Time Tag (LSTT) register. When an instruction executes, it additionally broadcasts 
its time tag (in the example, this is the instruction number). Snooping stations now also compare 
the broadcast result time tag (ResTT) with that held in the LSTT. If either the result is later than 
that last snarfed (LSTT <= ResTT), or the LSTT has not been loaded yet, and the register 
addresses match, then the result value is snarfed, the snarfing instruction is executed, and LSTT 
is loaded with ResTT. This ensures that only the closest most-recent previous version of an 
operand is used by an instruction for the instruction’s last execution. Thus, in the figure, if I1 
executes first, I9 executes twice: once with R4=1 (from I1) as its input, and the final time with 
R4=2 (from I5) as its input. If I5 executes first, I9 only executes once; it ignores the broadcast 
result from I1 when I1 does execute. 

Time-tagging thus features only linear cost growth, O(k), with the number of instructions 
held in the execution window, and is thus scalable. Further, its execution algorithm is simple. 

With memory operands, the memory address is used instead of a register address for result-
to-operand matching purposes. The hardware-generated predicates (described in Section 3.3.1) 
use the time tag as the predicate register address. 

Figure 3 shows the detailed components of one operand of an Active Station. There are three 
other necessary conditions for operand snarfing and instruction execution or re-execution: first, 
the operand must have changed value [8]; secondly,  the broadcast result must be a member of 
the same path (predicted or not-predicted) as the station’s instruction, in the case of Disjoint 
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Eager Execution (DEE) [16]; and lastly, the operand must be from an instruction prior to the AS 
(ASTT > ResTT). 

(a) Program Code (b) With Renaming (c) With Time Tags

Instruction
Number

Instruction,
Result Time Tag

(ResTT)

1.

5.

9.

1

5

9

R4a = 1

R4b = 2

R3 = R4b

Out-of-Order (OOO) Execution.
- I9 only snarfs I5 result
(at end, R3 holds ‘2’)

R4 = 1

R4 = 2

R3 = R4

Sequential
Execution

(at end,
R3 holds ‘2’)

R4 = 1

R4 = 2

R3 = R4

Out-of-Order (OOO) Execution.
- I1 result and ResTT broadcast,
       – R3 = 1, LSTT = 1
- I5 result and ResTT broadcast,
       – R3 = 2, LSTT = 5
(at end, R3 holds ‘2’)
(Same result if I5 broadcasts first; 
LSTT is set to and stays at ‘5’;
I1 result not snarfed by I9.)

Last Snarfed
Time Tag

In Active Station
(LSTT).

.

–

–

1, then 5

 
Figure 2. Time-tagged execution of code sample, with comparisons to other methods. 

Time tags are used in common processors to squash instruction results occurring after a 
mispredicted branch, as well as to maintain instruction order in general. Time tags as used in 
Levo were originally proposed for microarchitectures in the Warp Engine [2]. This machine 
relied on the use of floating point numbers for the time tags. In Levo, the instructions’ E-window 
positions are the time tag values, and hence are just small binary integers. Also see [10] for a 
different approach entirely. 
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Figure 3. Levo Active Station (AS) operand logic, showing comparison operations necessary for operand snarfing 
and instruction execution. 
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3.2  Segmented Result Buses  Scalable Microarchitecture 
In Levo, segmented or spanning buses are used to propagate active station results to later active 
stations. This is splitting Tomasulo’s Common Data Bus. This avoids a performance penalty 
because an instruction’s result is likely to be used soon after it has been created [3, 13]. Adjacent 
segments are connected via Register Forwarding Units (RFU), which introduce a small delay, 
usually one cycle, from segment to segment; see Figure 4. The idea is that the later in the E-
window a result is used, the more likely it is to be used later in time, and the delays introduced 
by the RFU’s will be hidden. Segment length is independent of column height. Since the length 
of segments need not change with the size of the machine, the spanning buses help make Levo 
scalable. 

RFU’s hold versions of the Instruction Set Architecture (ISA) register state. Time tags are 
forwarded along with their corresponding register values. RFU’s also provide a filtering 
function: multiple writes to the same ISA register in an RFU are combined, keeping the later 
time tag, and only one result value for that register is forwarded.  
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Figure 4. Spanning buses in a generic Levo E-window.  A bus’s length does not change as columns are added to the 
machine. (Physically, the last column connects to the first column, forming a loop of columns. In the floorplan of 
Figure 7, the loop is constructed so that the delay across all bus segments is the same.) Each SG drives its spanning 
bus and RFU through one bus, and snoops the output of the RFU through another connection. Each RFU also 
snoops the other buses at its level in the same column (not shown), to maintain RFU consistency for its SG. 

There is one RFU per sharing group and nominally one spanning bus per RFU. There are 
also Memory Forwarding Units (MFU), Predicate Forwarding Units (PFU), and spanning buses 
(not shown) for each of the corresponding data. The number of ports to/from RFUs, MFUs and 
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PFUs are small and are constant with respect to the size of the machine; this also helps ensure 
scalability. 

Other novel features are the elimination of a centralized register file, and the simplification of 
state commitment, both by using RFUs. To see this, assume in the figure that column i-1 is 
column 0, where instructions are committed. By the time an RFU’s state reaches column 0, it 
contains the equivalent of what would normally be thought of as the ISA register state. Since the 
register values have already been broadcast to RFUs in later columns, and since a new column’s 
(m-1) RFU’s are initialized with the contents of the prior column’s RFU’s, there is always at 
least one RFU in the E-window that holds the equivalent of the ISA state, no matter the time 
difference between writing and reading an architectural register; therefore it is unnecessary to 
save the ISA register state in a separate register file. The same is true of the predicate state. The 
memory values, however, must be written to the L1 D-cache, since an MFU cannot hold all 
possible memory locations. 

Sometimes instructions must request operands from earlier in the E-window. This is done via 
backwarding buses (not shown), following the same paths as the forwarding buses, just going in 
the opposite direction. 

3.3  ILP Enhancement Methods  High IPC 

3.3.1 Hardware Predication 
Full hardware-based predication is a new implementation of Minimal Control Dependencies. 
With MCD, all branches may execute concurrently, and the instructions after a branch’s domain 
[15] may execute independently of the branch. Former hardware-based methods required O(k2) 
hardware to realize MCD, k being the number of instructions in the E-window, since the control 
dependency relations of every instruction in the window need to be stored and/or determined 
with every other instruction in the window. In Levo the cost is O(k), since the amount of 
predicate storage and computation logic in each AS is constant with respect to the size of the E-
window.  

In our method predicates are generated completely at run-time. They are assigned to all 
branches, predicted, and evaluated solely with hardware, allowing the use of legacy code. Each 
branch in an AS has a predicate output associated with it, held in the AS. Each AS can also hold 
a branch target address, and holds the station’s instruction program address. Lastly, each active 
station has a taken branch table. Each entry of the table consists of a valid bit and a branch time 
tag; a branch’s predicate is implicitly true (taken) if the branch has an entry in the table. The size 
of the table is small and constant with respect to the window size, since table overflow is 
allowed. 

A simple example of hardware predication is shown in Figure 5, based on the example of 
Figure 2. The method works as follows. When a branch (I3) in the execution window executes, it 
broadcasts its target address (7), predicate value and time tag (3). Non-branch active stations 
following the branch, whose instruction addresses do not match the target address (I5, I9), snarf 
the predicate and its time tag. The branch is initially (and incorrectly) predicted not-taken, so no 
entries are made in the following instructions’ taken-branch tables. Since the tables are empty, 
and the snarfed predicate is false, the instructions execute and broadcast their results normally. 
After the misprediction is detected the branch is taken and the time tag (3) is entered in the 
stations’ (I5, I9) taken branch tables, with the corresponding valid bits asserted. Since there are 
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one or more entries in each table, the snarfing instructions (I5, I9) are disabled and effectively 
branched around.  

If there is a match between the broadcast target address (7) and a following station’s 
instruction address (I7), then the instruction is just after the end of the branch’s domain [15] (I4-
I6) and should thus be unaffected by the branch’s execution. This station still snarfs the predicate 
(taken) and its time tag (3) and then rebroadcasts them with the predicate changed to a canceling 
predicate. Later stations (I9) with a predicate address in their taken branch table matching the 
canceling predicate address (3) invalidate the table entry (3 to ‘none’); thus, the corresponding 
branch (I3) no longer affects the operation of the stations (I7-I9), the desired effect.  

Once the misprediction is detected and the branch resolves, the now-disabled instructions 
within the domain that have already executed and broadcast their results must nullify these 
results and cause dependent instructions to re-execute. In order to do this, the executed-now-
disabled instruction (I5) broadcasts a nullify transaction, containing the instruction’s time tag (5) 
and the register address (R4). Any later instruction (I9) with a matching operand register address 
(R4) and LSTT equal to the broadcast time tag (5) (dependent instruction) sets itself to the 
unexecuted state, invalidates its LSTT, and sends a backwards request for the nullified operand 
(R4). A prior instruction with a valid result (I1), or an RFU, satisfies the request, and execution 
(of I9 et al) resumes normally. 

 

(a) Program Code (b) With Renaming
and NO MCD

(c) With Time Tags
and Hardware Predication

Instruction
Number

Instruction, Predicate,
Result Time Tag

(ResTT)

1.

5.

9.

1

5

9

R4a = 1

R4b = 2

R3 = R4(b,a)

Out-of-Order (OOO) Execution.
- I3 predicted not taken, 
so I5 loaded into window,
I9 R4 operand renamed to R4b;
- I9 snarfs I5 result;
- I3 mispredicted,
window after I3 is flushed, 
operand of I9 is changed to R4a;
- I9 snarfs I1;
(at end, R3 holds ‘1’)

R4 = 1

R4 = 2

R3 = R4

Sequential
Execution

(at end,
R3 holds ‘1’)

R4 = 1

R4 = 2

R3 = R4

Out-of-Order (OOO) Execution.
- I5 result and ResTT broadcast, – R3 = 2;
- I3 pred. and ResTT broadcast;
- I1 result and ResTT broadcast, – R3 still 2;
- branch resolves ‘taken’, 
I3 pred and ResTT broadcast, 
I5 and I9 T-B Table entries to 3,

- I5 sends nullify transaction,
I9 LSTT matches nullify time tag,
I9 sends backwarding request for R4,
I5 disabled, so I1 satisfies request, I9 snarfs it;
- (at end, R3 holds ‘1’)

I7 matches broadcast branch target address, 
I7 sends canceling predicate, 
I9 T-B Table entry cleared, hence I9 enabled;

Taken-Branch Table
Entries

In Active Station.

–

none, 3

none, 3, none

3.

7.

IF bc GOTO 7. IF bc GOTO 7. 3

7

IF bc GOTO 7.

– In cases (b) and (c), bc is predicted 
‘not taken’, but is mispredicted.

none

 
Figure 5. Example of Hardware Predication. Compared to both sequential execution and traditional superscalar 
(non-MCD) execution. 
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There are other nuances to the correct operation of hardware predication, including overflow 
of the taken-branch table, an unlikely occurrence. Space precludes their description here; please 
see [9] for more information. 

The cost of hardware predication is low, since most of the extra state storage only takes a few 
bits in the AS. More buses are needed, but not many more than already exist, and most are only 1 
to 8 bits wide. This hardware stays the same for all AS’s and columns with respect to machine 
size; thus, hardware predication is scalable. 

A compiler-assisted form of run-time predication appears in [6]. Only simple hammocks are 
considered.  

3.3.2 Disjoint Eager Execution (DEE) 
Both MCD and Disjoint Eager Execution (DEE) are needed for very high ILP [16]. DEE requires 
the most likely instructions to be executed be given priority for execution resources. In Levo 
likelihoods are not expressly calculated; instead the “static tree” heuristic of [16] is used. 
Therefore this is a form of multipath execution in which there is the predicted or mainline path 
(M) as well as several much shorter not-predicted or disjoint paths (D) spawning from the 
mainline path at some conditional branches. 

DEE is realized in Levo by including AS’s solely dedicated to D-path execution in the 
Sharing Groups; see Figure 6. Typically, Levo has as many D-path AS’s as M-path AS’s. In 
effect this means that each Levo E-window column is actually composed of two columns, one 
for part of the M-path and one for (part of) a D-path. The two columns share the execution, bus 
and other resources. Mainline AS’s always have priority for the resources. The cost impact of 
realizing DEE is relatively low: less than 10% greater cost (see Section 5) for a large 
performance improvement, typically 45%. 

D-paths and M-paths execute concurrently, greatly reducing branch misprediction penalties. 
Conditional branches are assigned to a free D-path (the path is spawned) after they enter the E-
window. While DEE operation is somewhat detailed, the example given in Figure 6, based on 
that in Figure 5 illustrates the basic concepts. It takes one cycle to switch paths, and this is 
overlapped with instructions’ execution. 

Note that D-paths need not occupy the same E-window column as their corresponding M-
path column. D-paths can also be multi-column. A D-path can be in any E-window column(s). 
M-path columns are usually, but not always, in order from left-to-right, holding adjacent code 
sections in adjacently numbered M-path columns. 

4 Other Issues and Levo Solutions 

4.1  Instruction Window and I-Fetch 
The I-Fetch unit fetches whole column(s) of instructions from the I-cache and loads them into 
the E-window once column(s) there commit. The key here is that instructions are normally 
fetched in the static or memory order, keeping branches not taken for loading purposes, unless 
the branch is predicted taken and has a large domain (greater than two-thirds the size of the E-
window, in instructions). In that case the fetch becomes dynamic, resuming from the branch 
target. Initial predicate values for new column(s) are predicted concurrently. This all realizes 
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simple I-Fetch and high I-fetch bandwidth. It also helps keep branch domains with their 
branches, so that MCD and DEE can be fully exploited. 

Backwards branches are unrolled [15, 16] in the I-Fetch unit, with all but the last instance of 
the backwards branch converted to a forwards branch to enable/disable loop iterations 
appropriately. The overall loop body is wrapped around the E-window and continues to execute 
as long as the last instance of the backwards branch commits taken. When it commits not taken, 
the loop exits. The unrolling gives good utilization of the E-window for small loops and 
improves performance. 
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SG1. R4 =1 1. R4 =1

3. IF bc GOTO 7.
(bc is false; branch

is not taken)

3. IF bc GOTO 7.
(bc set true; branch
is taken)

5. R4 =2 5. R4 =2

7. 7.

9. R3 = R4 9. R3 = R42 1  
Figure 6. Sample arrangement and DEE operation of Mainline (M) path columns and DEE (D) path columns. The 
code example is from Figure 5. D-path spawning: D-path 5 is available and is spawned from the branch (I3) in M-
path 0 by broadside loading it with the same instructions as in M-path 0, from an I-Fetch buffer (not re-fetched from 
memory); the D-path branch is set to the opposite state of the spawned branch in M-path 0. Then both paths execute: 
respective I9’s hold different values of R3. After the spawned branch resolves (it was mispredicted), D-path 5 
becomes M-path 0: I9 now has the correct result for R3 (1); the old D-path 5 results are rebroadcast to other M-paths 
(1 to m-1); the old M-path 0 state is thrown out.  

Subroutine calls are conditionally inlined in hardware by the I-Fetch unit: when a call is 
encountered fetching is retargeted to the start of the subroutine, if the call is not in the domain of 
a predicted-taken branch. Subroutine returns are unconditionally inlined: when a return is 
encountered, fetching is retargeted to the return address. Return stack(s) are used to aid the 
process. 

4.2  Large Memory Latencies – Modified Memory System 
The deep E-window in Levo provides a large tolerance to main memory latency, up to 800 
cycles or more [5] with assumptions similar to those in Section 6. Similar observations have been 
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made by Karkhanis and Smith [4]. These latencies are typical of what is expected in the next few 
years.  

Store data is buffered in the E-window. Each MFU is chained to the next column’s MFU, as 
with the RFUs. However, an MFU’s internal structure is different. There is an L0 cache and a 
Previous Column Buffer (PCB). The PCB has n entries and holds the accumulated stores from 
the previous column, holding only the latest value for a given memory store address. PCB’s are 
used to distribute the store buffering throughout the machine and reduce the amount of buffered 
information. Once committed, and thus in column 0, one PCB’s worth of stores (from column 0) 
are sent to the L1 D-cache to update the memory state.  

Load requests are handled with memory backwarding buses. Loads can be satisfied from 
either earlier active stations, earlier MFUs, the L1 D-cache or higher up in the hierarchy. The 
result is forwarded as a store. 

As will be seen in Section 5, the physical realization of the Levo memory system employs 
multiple copies of the L1 D-cache to keep the access time to the cache low (1 cycle) and to keep 
cache access bandwidth high. The cache copies hold the same data, within a few cycles, with all 
of them replacing the same lines at the same time. While the loads from the different cache 
copies are likely to be different, the stores are always the same to all of the copies.  

5 Physical Considerations: Column Renaming and Chip Floorplan 
Levo avoids physically shifting the E-window by renaming the columns. Each physical column 
has one or more registers associated with it that hold its logical column number. When a logical 
left shift occurs, the logical column numbers of all of the columns are decremented. Recall that 
time tags throughout the machine are formed from the concatenation of the logical column 
number and the fixed row number of the corresponding active station; therefore, as left shifts 
occur the time tags are automatically corrected and their values re-used. Therefore the column 
renaming greatly simplifies the machine wiring, and eliminates the power consumption 
associated with a physical shift. 

A Levo chip floorplan is shown in Figure 7. The goal was to demonstrate Levo realizability 
on a single chip within the next few years; the goal was not area optimization or exactness per 
se. The Compaq/Intel EV8 chip floorplan and dimensions [12] were used to size similar Levo 
structures, as well as to ensure that the critical path is not substantially increased by the Levo 
microarchitecture. 

The geometry used is 8-4-8, that is, 8 sharing groups per column, 4 M-path and 4 D-path 
active stations per sharing group, 8 M-path columns and 8 D-path columns (8 E-window 
columns, total). One FPU (Floating Point Unit) and one IEU (Integer Execution Unit) form the 
PE of each sharing group. 64-bit data paths and machine architecture are also assumed. 

In the floorplan the columns’ spanning buses are physically oriented end-to-end and in a loop 
to keep the critical path length low. Every active station within a column is accessible from every 
other active station in the same column within one clock cycle. The delay from one forwarding 
unit to the next is one cycle or less. Assuming a target clock frequency of 10 GHz, possible 
within a few years, the realized clock frequency should be about 87% of this, that is, a 
performance loss of about 13%. This is offset much more by the IPC speedup of Levo for the 
geometry considered, at least a factor of 2. 
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Figure 7. Levo chip floorplan for an 8-4-8 geometry. The elements are drawn to scale. Sharing Groups (SG) 
communicate via the centrally located spanning buses in the ‘Forwarding Unit’ sections. The L1 caches, I-fetch 
units and predictors are replicated once per vertical column pair. 
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The Levo chip as described above is estimated to use about 600 million transistors; this is 
derived from both actual VHDL synthesis of key components [17] as well as rough estimates 
from the EV8 work. The current cost of the branch predictors is included in the above estimates, 
but the predictors are not included in the floorplan since they have not been tuned. The data 
value predictors are not included in either the cost or the floorplan since they currently add little 
to the performance, and thus are not needed. Note that Levo’s cost could be vastly reduced with 
fewer FPU’s (not needed for much GP code) or a 32-bit data path. 

Also note that Levo is easily scalable. For example, in order to increase the machine size 
only pairs of columns need to be added to either end of the center channel and inserted in the 
physical loop; the cycle time is unaffected. 

6 Experimental Methodology 
A cycle-accurate trace-based simulator (FastLevo) was written to model Levo’s key structures 
and measure its performance. FastLevo uses traces of MIPS-1 machine code (32-bit machine). 
The latter is generated from the benchmarks with a native SGI compiler using the ‘-O’ 
optimization and ‘-o32’ MIPS-1 switch. (FastLevo also simulates the few MIPS-2 instructions 
occurring in the relevant SGI compiler libraries.) 

Ten SPECInt benchmarks were simulated: 
 SPECInt95: compress, go, ijpeg 
 SPECInt2000: bzip2, crafty, gcc, gzip, mcf, parser, vortex 

Each benchmark was simulated for 100 million instructions with data gathering turned off, to 
warm up the predictors and caches and ignore program initialization. Data was gathered during 
the simulation of the next 500 million instructions. The benchmarks’ reference inputs were used, 
except for compress, for which the buffer size was reduced so that compress completed its 
initialization section within the first 100 million instructions. 

The common machine assumptions are shown in Table 1.  

 
Table 1. Levo default parameter values. 

Parameter Value 

Branch predictor 2-level gshare w/ 1024 BHT and 4096 GPHT, 2-bit saturating counter, 
one per E-window row. 

Data value predictor computational-stride predictor w/ 4096 entries, 2 source operands per 
entry, 2-bit saturating counter per operand, one per E-window row. 

Word size 32 bits 

Processing Element latencies/pipelining Same as MIPS R4000. 

L0 hit latency 1 cycle 

L0 size 32 one-word entries 

L0 configuration Fully-associative 

L0 block size 1 word 

L1-I,D hit latency 1 cycle (cache access time itself; does not include 1 cycle bus delay) 
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L1-I,D size (each) 64 KBytes 

L1-I,D configuration 2-way set associative 

L1-I,D block size 32 bytes 

L2 (unified I/D) hit latency 10 cycles 

L2 size 2 MBytes 

L2 configuration Direct-mapped 

L2 block size 32 bytes 

Main memory latency (no misses) 100 cycles 

Main memory interleave factor 4 

Return stacks 2, 16 entries each. (in I-Fetch unit) 

Spanning bus delay  
    (no contention) 

1 cycle 

Forwarding Unit delay  
    (no bus contention) 

1 cycle 

Buses per RFU and per MFU 2 input and 2 output buses 

Buses per PFU 1 input and 1 output bus 

M-path to D-path column switch Switch itself: 1 cycle. D-path results broadcast as bus resources permit. 

Columns per D-path 1 column 

7 Experimental Evaluation and Characterization 
The major sets of experiments were: microarchitecture assumptions verification, performance 
sensitivity to machine geometry, and performance effect of ideal/real I-Fetch and memory 
systems. For a point of comparison, the SimpleScalar/PISA [1] machine model (similar to MIPS-
1) gave an IPC of 1.96, assuming an unrealizable 32-way issue conventionally-constructed 
superscalar machine, with the same benchmark assumptions.  

7.1  Microarchitecture Assumptions’ Verification 
We first hypothesized that buses can be segmented with non-zero delay forwarding units inserted 
between the segments. Figure 8 presents the performance degradation experienced when the 
forwarding unit delay is increased from 0 to 3 cycles. It is seen that the typical delay, 1 cycle, is 
easily tolerated, having a performance loss of 6%, confirming the hypothesis. 

We also hypothesized that buses need only be some fixed length (as a machine design 
increases) to capture most of the performance. Figure 9 shows the performance improvement 
with increasing bus length, conservatively assuming a constant spanning bus delay of 1 cycle. It 
is seen that there is only an 11% performance increase when doubling the spanning bus length 
from 8 to 16 SGs, with a much larger improvement of 29% going from 4 SGs to 8 SGs; 
therefore, a spanning bus length of 8 is necessary and adequate, and the hypothesis is confirmed. 

7.2  Levo Geometry Effects on Performance 
In this set of experiments each machine geometry dimension was varied with the other two 
dimensions held constant. See Figure 10 for the results.  
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Figure 8. Performance versus Forwarding Unit delay. The baseline is the performance with 0 cycle FU delay. 
Performance is relatively insensitive to FU delay. 8-8-8 Levo geometry used with spanning bus length of 8 SGs. 
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Figure 9. Performance versus spanning bus length. The baseline is the performance with 16 SGs. Most of the 
performance, 90%, is realized with a spanning bus length of only 8 SGs. 16-8-8 Levo geometry used. 
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Figure 10. Performance effects of Levo geometry changes. (Legend: in lower right-hand corner.) Each geometry 
variable is varied in turn, holding the other variables constant. Each baseline is the performance of the geometry 
having quantity 4 elements of the corresponding independent variable. All geometries used 8 SGs for the spanning 
bus length, except for 4-4-8, which used 4 SGs. 

Most often, increasing any dimension increased the performance, frequently dramatically. 
The smallest changes occurred with an increased number of columns, with a 10% increase on 
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average when going from 4 to 16 columns. The largest changes were seen with increased Sharing 
Groups per column, with a 55% increase in performance going from 4 to 12 SG/col. While 
increasing columns and SG/col gave monotonically increasing trends, increasing the AS/SG gave 
varying trends. This is to be expected: the former changes increase the number of PE’s, while the 
latter only determines PE utilization, which varies across benchmarks due to code variations. On 
average, there was no need to go above 12 AS/SG, which gave a 19% improvement over 4 
AS/SG. Part of the reason(s) why the gain in performance for increased SG/col is greater than 
that for an increased number of columns, but only part of the reason, is the short spanning bus 
length (4) of the baseline (4-4-8) for SG/col; see Figure 9. 

7.3  Ideal/Real IPC Performance 
The effects of ideal/real I-Fetch and an ideal/real memory system were examined for several 
different machine geometries. Ideal I-Fetch is realized by using oracles for the branch predictors 
at instruction load time. An ideal memory system is realized by assuming 100% L1 data and 
instruction cache hit rates. The results are presented in Figure 11; all four combinations of 
ideal/real – I-Fetch/memory system are shown, each for four machine geometries. IPC ranges 
from a low of about 4 to a high of about 31. We have also seen IPC’s of up to 80 with a 64-16-16 
geometry and 4 buses per forwarding unit (not shown in the figure). 

Overall, we have three major conclusions from these results. First, with realistic assumptions 
and a current-sized geometry (8-4-8), we are not yet able to realize high IPC (the harmonic mean 
is about 4 IPC). Second, good news, there is still more IPC to get, given the high ideal numbers 
(about 10 IPC for the 8-4-8 geometry). Lastly, the memory system functions well with or without 
Ideal I-Fetch, primarily leaving the I-Fetch system to be improved. One possible solution is to 
simply use a single much better branch predictor for the static/dynamic I-Fetch decision itself. 
We are also pursuing much more advanced solutions, including trace caches and also using DEE 
in the I-Fetch unit. 

7.4  Other Levo Characteristics’ Results 
Five other additional experiments were performed, again over all benchmarks, to investigate 
certain other performance characteristics of Levo. The experiments, their results and conclusions 
are presented in Table 2. A Levo 8-4-8 geometry was used throughout.  

8 Summary 
One billion transistor microarchitectures have many daunting requirements: high IPC, high main 
memory latency tolerance, high clock rates, and ability to execute legacy codes. Further, such 
machines must honor hard chip realization constraints such as scalable structures and short 
buses. This paper has proposed the Levo microarchitecture, targeted to satisfy all of these 
requirements. The reorder buffer and scalable bussing structure issues have been thoroughly 
addressed and resolved in Levo. The performance simulation results are very encouraging, both 
verifying the basic tenets of the resource flow model and demonstrating IPC’s in the 10’s for the 
Levo core E-window and memory system. We are currently pursuing improvements including 
more accurate I-Fetch and data value prediction. 
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Figure 11. Performance in IPC of Levo with Ideal Fetch/Ideal Memory, Ideal Fetch/Real Memory, Real Fetch/Ideal 
Memory, and Real Fetch/Real Memory (see legend, lower right corner). 
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Table 2. Other Levo experiments. 

Experiment Result(s) Conclusions 
Varying number of buses per 
Forwarding Unit. Baseline: 2 buses 
per Register FU and Memory FU, 
and 1 bus per Predicate FU. 

To 1 bus/FU: 14% IPC loss 

To 4 buses/FU: 3% IPC gain 

 

For current or near in geometries, 
the baseline is a good design point. 
Little is gained by going to more 
buses. 

Removal of value prediction. IPC loss of less than 0.8% Don’t use a traditional value 
predictor with current Levo design.2 

Going from 1 to 2 columns per D-
path, total D-path columns held 
constant. 

IPC loss of about 8% Single column D-paths are preferred, 
at least for smaller machines. 

Use of D-paths. IPC gain of about 45% Keep D-paths in Levo. 

Use of per-row branch predictors, a 
necessity, vs. baseline of a single 
branch predictor of same size using 
all branch outcomes. 

IPC loss of about 0.4% Using per-row predictors, even with 
their limited view, does not 
significantly reduce performance. 
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More Information 
See: http://www.levo.org or the authors’ sites at: http://www.ele.uri.edu/~uht and 
http://www.ece.neu.edu/info/architecture/nucar.html . 
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